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ABSTRACT 

In the study of longitudinal movements in public opinion it is usually the case that data 

are abundant, but  irregular. Both cases (times) and variables are numerous, but it is never the 

case that all cases are available for any one variable. The dyad ratios algorithm was created to 

make dimensional analysis possible for this perverse data structure. The central logic of the dyad 

ratios algorithm is explained. Central focus is on the use of ratios as a starting point, the 

recursive estimation procedure, validity estimation by iterative procedure and the bootstrapping 

of standard errors. The ability of the algorithm to estimate a known longitudinal path is tested 

with artificial data. Then dyad ratios is compared to principal components analysis for a 

particular real data problem where both are possible. A final section makes a limited comparison 

between dyad ratios and item response theory. 
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The dyad ratios algorithm is a method for the extraction of a common dimension in data 

such as survey marginal responses over time. The problem it solves is that such data are 

massively incomplete: most variables (survey questions) do not exist for most cases (time 

points), and therefore the technology of principal components analysis is undefined. 

The algorithm is far from new. It has existed in code and in usage since 1988, almost 

three decades. Hundreds of scholarly articles and books have exploited it. But the algorithm itself 

has not been the subject of a scholarly article.1 It has been described in appendices, in software 

user guides, and the like. But there is no scholarly publication that develops the methodology, 

validates the result, and compares it to alternatives. That is what this article is to be. 

Public Policy Mood is now a staple of American politics. The literature is now too 

extensive for citation. It has found application in Britain (Bartle, Dellepiani & Stimson, 2010; 

Green & Jennings, 2012; McGann, 2013), France (Brouard & Guinaudeau, 2015; Stimson, 

Tiberj & Thíébaut, 2010; Stimson, Tiberj & Thíébaut, 2012), Europe (Guinaudeau & 

Schnatterer, 2017), Mexico (Baker et al., 2015), with efforts underway or completed in Spain 

(Bartle, Bosch & Orriols, 2014), Portugal, Germany, and Japan. In the United States and Europe 

it has found application for explaining public policy (Erikson, MacKuen & Stimson, 2002; 

Bartle, Dellepiani & Stimson, 2010). And there is a related literature on its causes in the U.S. 

(Enns & Kellstedt, 2008; Owen & Quinn, 2016; Ellis & Faricy, 2011).  

                                                

1 The world of scholarly publication is much friendlier to methodological developments 

today than it was thirty years ago. And  Political Analysis, the one journal that might have 

published such work was unavailable to me because I was its editor. 



Here is the plan of this article. In Section 1 below I undertake a detailed description of the 

logic of the dyad ratios algorithm, drawing comparison at various points to its similarities to 

principal components analysis. In Section 2 I examine an artificial data test of the performance of 

the algorithm. In Section 3 I develop a controlled comparison between the algorithm and 

principal components analysis for a rare case where both estimation strategies are possible. And 

then in a final section, 4,  I draw a more distant comparison to the Bayesian IRT model for 

similar problems, a product of recent developments. 

The Problem 

Assume to begin that something like public policy mood exists. Mood is a generalized 

disposition to support or oppose related clusters of public policies. We need not assume that this 

generalized disposition is a matter of the left vs. right as conventionally understood. But in 

Western democracies most analysts support such a belief. Indeed, the belief predates our ability 

to measure the concept by centuries. 

How would we measure such a concept? That question is the beginning point. We have 

indicators of reasonably high quality in the body of survey research questions on public policy 

preference. Consider three examples. (1) Should government do more or less than it is now doing 

to reduce the disparity of incomes between rich and poor? (2) Do you support or oppose a 

national health care plan that provides insurance coverage for all citizens? (3) Should 

government take active measures to reduce the threat of global warming? We have hundreds of 

such questions administered thousands of times over a period of years. We believe that many of 

them are influenced by latent dispositions of survey respondents so that some portion of their 

variation reflects something more general than healthcare, income equality, or climate change. 



This latent structure thesis, the belief that something unobserved and general accounts for 

the variation of the particularistic measures we have, is common across many branches of 

science. And one statistical solution, principal comments analysis, is very often the chosen 

technique for estimating the latent structure. It was natural at the outset to conceptualize the 

problem in terms of principal components. We have particularistic evidence which we wish to 

solve for the general dispositions that lie beneath. But that will not work. 

Why will it not work? It will not work because principal components estimation requires 

as a starting point a matrix of variables (particular survey questions) by cases (times). And no 

such matrix exists for public policy preferences questions. That is true because the actual agenda 

of politics changes over time and so survey organizations, trying to stay current, change the 

questions they pose. Note for my examples above, income inequality, healthcare coverage, and 

climate change are all products of the political debates of the last twenty years or so. If one 

searches for response to climate change, for example, nothing will be found for earlier decades 

because climate change was not then a public concern.2 

And even if we could somehow hold the political agenda constant, polling firms—

especially commercial polling firms—make decisions about what questions to pose for reasons 

that do not include facilitating our research. And thus the matrix of data we start with is 

massively incomplete. Most public policy preference questions were not posed in most 

aggregation periods, years for example. 

                                                

2 But one would find for the McCarthy period in the United States questions about fear of 

domestic communism for 1950-1952—and never found before or since—when the issue was the 

hottest thing going. 



Consider the estimation of U.S. policy mood used later in this article as an example. The 

data consist of 154 separate survey questions for 1952 through 2016, 65 years. So the size of the 

full matrix is 154*65 = 10,010 potential cells. Actual cells, cases for which data exist, are 3308. 

Thus about 67%3 of the potential matrix is missing. There is no problem with principal 

components analysis except that its requisite conditions are not met by the data we have. 

The motivation for the dyad ratios algorithm to come is that the well developed 

technology of principal components is not available for the public opinion case. 

THE DYAD RATIOS MODEL 

What does it mean when we compare the result of a policy preference question from 

survey research to the same question posed at another time? The starting point of the dyad ratios 

conception is that the ratio of the two is empirical evidence of change in time for the underlying 

latent variable. This is true of course only to the degree to which item i is a valid indicator of 

latent concept C.  

Further, if we have several such items, i, j, k, l, m, and n, the degree to which ratios at 

particular times covary across items is evidence of shared variance, both between the items and 

between the items and the latent concept. 

Item validity in this conception is a variable property of items, a matter to be determined 

empirically by observing how much of the item's variance is shared with the latent concept. Note 

the contrast with the now popular Item Response Theory alternative. IRT requires assumed 

validity of items. It is based on its founding analogy to test theory where, of course the test 

                                                

3 Actually 67% underestimates the proportion of missing cases because some of the 3,308 

actual cases are multiple surveys in the same year which become a single case after aggregation. 



designer selects items for their assumed validity. An item about the meaning of a square root 

might be selected for a test of mathematical ability or knowledge, for example. An item of 

knowledge of Shakespeare's plays would not.4 The difference between the two is assumed 

validity. 

A similar difference arises in interpretation of cross sectional item marginal totals. In the 

IRT framework, with assumed validity, a difference between two items in marginal percents—

percent left in this case—is interpreted to mean that the item with the smaller score is more 

difficult to agree to than is the larger one (Caughey & Warshaw, 2015). Shared variance 

conceptions, such as principal Components and dyad ratios make no such interpretations because 

they do not assume the relatedness of items. That opens the possibility that differences in 

marginals might occur because two items measure something different, not more or less of the 

same thing.  

Now I proceed to nuts and bolts, my goal to explain how starting with an assumption of 

meaningful ratios can lead to a full dimensional analysis, with all the complexity that entails. 

Data: Begin with data. A typical survey item will have three sorts of responses, left—

“liberal” in the American sense—responses, right (“conservative”)—and some which are either 

neutral or meaningless. As a starting point we need a single value, xit, standing for the value of 

item i at time t.  

                                                

4 This difference at the theoretical heart of dyad ratios and IRT leads also to a difference 

of procedure in the two approaches. Dyad ratios can be applied to any set of items, because it 

selects and weights those that share variance. IRT analysts must use theoretical judgment to 

preselect valid items (McGann 2013). 



The algorithm doesn't dictate how that single value is to be obtained. But for illustration I 

use: 

€ 

xit =100 × Leftit
(Leftit + Rightit )  

where the Left and Right totals are summed over multiple responses, if present, and the 

subscript it references item i at time t.5 

After aggregation into T regular time periods, we have a matrix of N items for T periods, 

xit where i indicates variables and t indicates period. Because no survey item is ever posed at 

every consecutive time point in the sample, most of the matrix is missing data, represented as 

zero. We assume that items are positive numbers scored to represent the concept in question. I 

will refer to the concept as Ct and its estimated value as 

€ 

ˆ C t . It eases exposition to assume that all 

items are scored in the same direction, that higher scores indicate more of the concept and lower 

scores less of it (regardless of the polarity of the underlying survey question). 

Our definition of a variable or item is that it is the same question, the same response 

options, the same sampling design and typically posed by the same organization (although that 

requirement can sometimes be waived). Thus a common variable name implies that all of the 

cases of that variable may be meaningfully compared. 

                                                

5 One might object that deleting the purely missing responses and the neutral or moderate 

in-between ones does violence to the data. But any arrangement that took account of those 

responses would require more than a single measure and that would defeat solving for a simple 

structure. In any case, this scoring procedure is just for illustration. The dyad ratios algorithm 

will accept any single score. 



Ratios 

Define a dyad as values for the same variable, xik and xil for any two time points, k and l, 

where k≠ l. Then as a starting point we can say that the ratio 

€ 

rikl =
xik
xil  

is a meaningful indicator of the concept C to the degree that item i is a valid indicator of 

C. (The validity issue is taken up below.) This assumption of meaningful dyad ratios is the 

foundation of the algorithm and the source of its name. 

Thinking of data as ratios rather than variable scores has one major advantage. Whereas 

scores are not comparable across items, ratios are. Two variables will, in general, produce 

different scores. Because there is no science of question wording, we do not know what level of 

support or opposition each item should draw.  If we had a full set of cases for each variable (as in 

principal components analysis) we could estimate the variable means and use that knowledge to 

compare across items. But we do not. Because of the missing values issue, we have neither a full 

set of cases nor a representative sample of them. Thus we cannot know item expectations. But 

ratios, r, have a known expected value across cases, 1.0. That common expectation justifies 

comparing across items. 

But how to combine items? We have a multitude of dyad ratios, with typically large 

numbers for each time point in the series to be estimated. There are multiple ratios for each item. 

Time k, that is, has a ratio for every other time point that is available for item i. And then there 

are multiple variables as well. So information exists in abundance and the problem becomes 

simply how to combine it sensibly. 



The problematic aspect of ratios is that they are relative information. What we want to 

know is the absolute level of our concept for some time t. But what we have tells us instead how 

t is related to t+k. 

If all variables were available for one or more common times, then the problem is easy. 

We make the ratios relative to those times and then we have absolute information. But in general 

our real world data do not provide the convenience of a time point available for all variables. The 

easy option is precluded by the data we have. 

Recursive Estimation 

 There is no global analytic solution for combining information across items. We could 

just ignore comparability issues and average across all the different ratio estimates for each case. 

That would probably produce a decent approximation of a good measure. But it depends upon an 

assumption, that we have a representative sample of time points for each item, that is known to 

be false. Recursion is a second best approach. Begin with the final point of the series, T. Having 

lost our metric information in the computation of ratios, we can assign an arbitrary value to this 

one time, say 100. 

Now there exists a subset of items which include an available value for time T. For those 

items (only) we can estimate absolute values for each item and each t by simply projecting the 

known value at T (100) onto the ratio of T to other time points. If, for example, item i has an 

average T to T-1 ratio of .92, then the estimated score for that item at t-1 is 92. Then we can 

average across all existing cases that have non-missing values for T and T-1 to get an estimate of 

t-1. (We are still assuming perfect validity for items here. That issue will be dealt with below.) 

All earlier times are also projected for later use. 



For the latent concept C denote our estimated value for case t-1 as 

€ 

ˆ C t−1. So now we know 

two values, CT = 100 and a data determined value for 

€ 

ˆ C t−1. The data determined value reflects 

the true ratio of T and T-1 estimated from all of the data which exists. No missing values enter 

the computation and no existing values are ignored. 

Now we can repeat the process for comparing T-1 to T-2, but this time using the estimate 

for T-1, 

€ 

ˆ C t−1, rather than an arbitrary number, for the value at T-1. Following this procedure we 

eventually work back to time 1, the beginning of the series to be estimated. 

When using backward recursion later periods tend to dominate the solution. Each later 

value has  influence on the values of early items, but not the reverse. Also the estimates are not 

unique. Reversing the order and starting with time 1 and working forward—forward recursion—

produces a similar, but not identical, set of estimates. Forward recursion has the reverse 

weighting of backward, early items contribute more to the solution than do later ones. 

 So we end up with two estimates of the latent concept C, C forward (

€ 

ˆ C F ) and backward(

€ 

ˆ C B ), which are equally valid time series. Averaging the two (for each time point) accomplishes 

two things, (1) it uses all available information for the solution rather than using one and 

ignoring one, and (2) it corrects the weighting effects to produce a summary score in which all 

items weight equally in the solution. 

Smoothing: Now we face a choice. We could just average the computed values of 

€ 

ˆ C F  and 

€ 

ˆ C B . But sampling theory  suggests that we could do better. Sampling theory tells us that if nature 

produced smooth outcomes—i. e., if opinion change were gradual and regular rather than abrupt 

and jumpy—t hen our observed estimates of it would be noisy. Because the data points are the 

result of survey samples, they will capture the true level of the phenomenon while adding or 



subtracting a small error in each due to sampling. So if nature were smooth, we would still not 

observe smoothness due to sampling errors. 

Thus the choice: in estimating  CF and CB do we prefer those which are strictly data 

determined (and therefore also sampling error determined) or a smooth approximation based 

upon the prior knowledge that nature is smoother than empirical estimates of it? In my view, 

which the reader need not share, the smoothed approximation is superior to the data-driven 

estimates. 

The particular smoothing model chosen is exponential smoothing. It has the virtue that it 

is sensitive to how much noise is present in the data series (and will not alter a  series that is 

already smooth).  The exponential smoothing model is: 

€ 

yt = αxt + (1−α)xt−1 

where y is the smoothed version of x.  The intuition is that if the past, xt-1, provides any 

useful information for predicting yt, then some portion of the variation in xt is a deviation from 

the smooth path of x.  This is seen in zig-zag behavior, where the series tends to return to normal 

levels after extreme movements away from them. 

The α parameter is estimated (iteratively) by minimizing within sample  forecast error.  

Thus it is fully determined by the data.  Exponential smoothing has the desirable property that it 

will  not oversmooth.  If the data are already smooth, a situation  that often occurs with annual 

aggregation levels, then α  converges on 1.0 and yt converges on xt.  Smoothing occurs in both  

forward and backward directions in time, the result of which is  that the raw data series become 

exponentially weighted moving averages of past and future values. 

Smoothing operates on the raw values of CF and CB during estimation. That means, in 

effect that the smoothed value is presumed to be a better measure of the true level of the series 



than is the original, and that it is the  smoothed values  of the series that drive the ultimate 

measure.    

The impact of smoothing varies in direct proportion to the apparent randomness of the 

series.  Where the original series are highly patterned, the impact of smoothing is rarely 

discernible.  Where, in contrast, they exhibit a good deal of period-to-period zig-zag fluctuation, 

the effect of smoothing is larger. 

What consequence? Smoothing has a big (and helpful) effect on periods in which data are 

relatively thin and usually modest effects when data are rich. This is to be expected because 

having multiple estimates of a quantity averaged together (when data are rich) produces natural 

smoothing, the Central Limit Theorem in action. 

Validity Estimation  

The issues that arise in validity estimation in the dyad ratios algorithm are essentially the 

same as the validity issues in principal components analysis. In principal components analysis 

there are three standard approaches for validity estimation, (1) assuming perfect validity—

essentially ignoring the issue—(2) estimating from the R2 of multiple regressions of item i as 

dependent on all other items, and (3) iterative estimation. These amount in principal components 

to treatment of the main diagonal of the input matrix, that it is (1) 1.0 for all items, (2) R2
i, or (3) 

a convergence result where µi
2 (validity assumed for item i) becomes equal to 

€ 

ˆ µ i
2  (validity 

estimated from the squared loading of 

€ 

ˆ C  on xi.)  The first approach violates our understanding of 

measurement theory, albeit usually with small consequences. The second is impossible due to 

missing data issues. The third is implemented in software producing the dyad ratios estimates. 

Digression on Validity and Matrix Diagonals:  In the usual conception input to principal 

components is a N by N correlation matrix, where N is the number of variables. That is either 



because the analyst inputs a correlation matrix—which was common when computer processing 

speeds were much slower than now—or inputs raw data from which a correlation matrix is 

computed as the first step. All of the off diagonal elements of the matrix represent the 

correlations between variables i and j where j≠ i. They are conceived as common variance and 

represent no problems. The main diagonal elements are all correlations with variables and 

themselves and are of course always 1.0. But in the principal components setup they stand for the 

shared common variance of a variable and itself and 1.0 is not an appropriate value for common 

variance. Why? Consider the measurement identity: 

€ 

σTotal
2 =σCommon

2 +σUnique
2 +σError

2
 

The total variance represented by a correlation is 1.0. It consists of three components, (1) 

the common variance which is the portion shared with the concept (also called validity), (2) the 

unique variance, which is the portion due to the indicator, but not shared with the concept, and 

(3) the usual kinds of errors. In the general case all three components exist and have positive 

values. Therefore the common component must be less than 1.0, the empirical correlation. Since 

the diagonal element is an estimate of exactly common variance, the empirical estimate of 1.0 is 

always an overestimate. Thus the important decision for principal components is how to estimate 

that common variance diagonal term. And to repeat, they are (1) just using the 1.0 overestimate, 

(2) the regression R2 estimate, and (3) the iterative solution. 

In dyad ratios there is no correlation matrix—because many cells of such a potential 

matrix are undefined when variable i and variable j are never present for the same cases. But the 

same need for estimating variable validities exists. The chosen strategy is iterative estimation. 

In the theory of vector decomposition mathematics if you could somehow “know” the 

right values of the validity estimates for each item, µi
2 (the proportion of all variance in the item i 



that is shared with the concept C) then the estimate produced after estimation, the squared 

correlation between the latent factor 

€ 

ˆ C  and the raw item would be the same value, 

€ 

µi
2 = ˆ µ i

2. That 

theory provides a solution criterion. Iterative solution is reached when µi
2 estimated from the 

previous iteration differs by less than a trivial amount (.001) from µi
2 estimated from the current 

iteration for all i. There are N such estimates and the solution requires that all N be less than .001 

different for solution. 

Where validity comes into play in dyad ratios is that the estimate for each time point is, 

instead of a simple average of ratios, ri, 

€ 

ˆ C t =
rii=1

N
∑

N  

a weighted average of ratios weighted by item validity. 

€ 

ˆ C t =
ˆ µ i

2rii=1

N
∑

ˆ µ i
2

i=1

N
∑  

Reintroducing Metric 

In the family of principal component and factor techniques it is customary to create latent 

dimension estimates as standard scores, mean 0.0 and standard deviation 1.0, that is. This is done 

because metric information contained in the raw measures is lost during creation of a correlation 

matrix. The dyad ratios algorithm, as implemented in software, instead recaptures the original 

metric information in the input items—means and standard deviations, that is—and then builds 

that information back into the latent dimension estimate, weighting by validity estimates for each 

variable. Thus the estimated latent variable is explainable in terms of the input items. If it 

produces a score of say 60 for a measure of leftness, for example, that means that the typical 



validity-weighted survey item has an agreement with “left” response options of 60%. Based as it 

is on overall measures, this procedure guarantees descriptive accuracy for the entire scale.  

Bootstrapping Standard Errors 

Users of estimated time series like to have cross-sectional—that is, period by period—

standard errors around such estimates. Journal editors seem to like them even more. Never 

having seen such information actually employed for inference, I am agnostic on the matter. But it 

is worth considering how variability estimates might be constructed.6 

When it is possible to know standard errors from an estimator, those are the definitive, 

proven, values and obviously the best way to proceed. But there are many situations in which no 

such derivation exists. In these cases bootstrapping presents a robust second best option. The 

fundamental idea of bootstrapping is that we can subject the estimator to variations of known 

magnitude in data input and then observe its behavior. With a sufficient number of such 

observations we get a distribution of values that are produced for each particular case and that 

distribution becomes empirical evidence for the properties of the distribution, the one in question 

being the standard deviation. The standard deviation of the distribution of observed estimates is 

the best (empirical) estimate of the standard error of the estimator. 

The data input to the dyad ratios algorithm is survey-based estimates of proportion “left” 

response. In one particular aggregation period—day, month, quarter, year, or multiple year 

                                                

6 I write in a hypothetical vein here even though I have implemented the procedure and 

reported the results. The reason is that the computer code for doing so is in a language (Visual 

Basic) no longer supported and is compiled on an obsolete compiler for Windows versions no 

longer supported. Time permitting, a modern and sharable version will be developed. 



period, that is—a particular value, say 65, is observed and reported. Sampling theory tells us that 

that value, call it 

€ 

x it  for item i and time t, is a best estimate of the true value, µit, but since it is 

the observed outcome of survey sampling with a sample of a particular size, it is merely an 

estimate of µit, subject to some fluctuation due to the fact of having randomly drawn a particular 

sample and not another equally valid draw. 

That tells us how to proceed to varying the input in order to observe the behavior of the 

output. For each k repetitions of the algorithm7 we alter that input value from the fixed original 

value, 65 in the example at hand, to a random draw from a distribution with mean xit (e.g., 65) 

for item i at time t, and standard deviation σit, which is readily computed from sample size for 

the binary indicator. 

When the period by period standard errors are estimated, it is easy to put confidence 

intervals around the estimated time series outputs. Because such estimates are empirically 

derived, they have no provable properties. That being the case, some scientific skepticism is 

appropriate. 

With the technical details settled, I turn to three sections on performance. The first of 

these asks the question, given a known pattern—which is known because it is artificially 

generated—how well do we do recovering the pattern? 

What do All Those Numbers Mean? 

It is conventional to craft journal articles at the maximum level of reader understanding. 

And I have done that up to this point. But I am conscious that there is a class of users of 

advanced techniques who want to exploit them with becoming expert in all the paraphernalia. 

                                                

7 I usually employ k = 1,000. 



We have survived generations of political scientists who used principal comments and it 

variations with a good deal less than full understanding. Early in my career I was one of them. 

So what is a lesser, but still workable level of understanding? I have in mind the reader 

who, perhaps with assistance, can conquer the computer applications and then encounters the 

.log output file and asks “What do all those numbers mean? 

I answer that question from the top down. The estimation which follows is daily 

presidential approval for Donald Trump. I will skip over the obvious in the front end. 

Iteration History: There is little of interest in lines 11 to 15. The convergence criterion is 

the difference on separate iterations of validity estimates. It is a maximum change in validity 

estimates for all 11 variables. It is normal to be very large on the first iteration because the 

estimates start at 1.0. Reliability is the Pearson product moment correlation between forward and 

back estimates. It is unusually high here because fit to the approval data are excellent. AlphaF 

and AlphaB are estimates of the smoothing parameter α. These data are naturally smooth and so 

the alphas approach 1.0, which means that smoothing effects are trivial. In the typical case none 

of these diagnostic numbers would be reportable. 

Loadings and descriptive variable information:  Loadings are the key to interpreting the 

meaning of a latent dimension. They are product moment correlations between the latent 

dimension estimates and the raw indicators. Here they are all high and positive. That is evidence 

that all survey houses are tapping the same approval concept with their various question 

wordings. The Gallup data are daily while others are monthly at best and thus these better data 

dominate the solution. 

Dimension 1 Information: The last category of output reflects on the quality of the fit. 

The percent variance explained tells us how much of the indicator variance is accounted for by 



the common dimension, here an impressive 88 percent. Again this reflects the excellent validity 

of the approval indicators. Some more on the order of high 30's typifies analyses of diverse 

policy preferences such as mood. 

01 Estimation Report for File: Z:\jamesstimson\Data\TrumpJob.dta 

02 

03 267 records after date scan 

04 

05 Period: 2017.1 to 2017.8, 216 Time Points 

06 

07 Number of Series: 11 

08 

09 Exponential Smoothing: On 

10 

11 Iteration History: Dimension 1 

12 Iter Convergence Criterion Items Reliability AlphaF AlphaB 

13   1       .9766      .001    11        .999   .959   .962 

14   2       .0013      .001    11        .999   .960   .963 

15   3       .0000      .001    11        .999   .964   .963 

16 

17 

18 Loadings and descriptive variable information 

19                           Dim 1     Dim 2 

20 Vn        Variable  Cases Loading   Loading   Mean    Std Deviation 



21 --------------------------------------------------------------------- 

22   11      GALLUP  211    1.000     .000    39.507     2.511 

23    6      MARIST       5     .980      .000    37.400     2.332 

24    5      IBD/TIPP      4     .965     .000    38.000     2.915 

25    9      QUINN       13     .281     .000    37.615     2.558 

26    4      FOX             6     .598     .000    43.500     2.630 

27    1      ABCWP      3     .826     .000    38.333     2.625 

28    3      CNN/ORC  3     .808     .000    42.000     2.828 

29    7      MONMOU 4     .506     .000    40.500     1.658 

30   10      SUFFOLK 2   1.000     .000    44.500     2.500 

31    2      CBSNYT    7     .264     .000    39.286     2.373 

32    8      NBCWSJ    4     .447     .000    40.750     1.920 

33 

34 Dimension 1 Information 

35 Eigen Estimate 1.07 of possible 1.21 

36  Pct Variance Explained: 88.15 

37 

38 Weighted Average Metric: Mean:  40.18 St. Dev:   2.54 

TESTING THE ALGORITHM WITH ARTIFICIAL DATA 

 Artificial data offers the advantage of generating a perfectly known pattern in the latent 

concept to be estimated. That allows assessment of the accuracy of estimation given real world 

factors in the data. 



The Data Generating Process: For an artificial latent concept a sine function is generated 

over 1,000 cases. This is chosen to partially mimic the irregular cycles often found in public 

opinion data.  

 

€ 

y = sin( dπ
180

)
  

where d is 1 to 1,000, representing degrees. 

With a constructed mean of 50 and a standard deviation of 10 the sine function, except 

for its error-free smoothness, looks much like the result of estimating a latent concept from 

survey data. 

The simplest test would be the create the latent concept and the artificial “items” without 

error. We will not do that because the result can be known, the estimates would converge 

perfectly—r = 1.000—on the latent concept. 

In the real world items always come from survey research and survey research always has 

sampling error. Thus we generate items that perfectly capture the known function and then add 

sampling error in controlled amounts. For the test case we have five artificial items, x1—x5, with 

means of 40—60 in 5 point intervals. 

Sampling error is emulated by normal draws from N(

€ 

x ,σ2 ) where σ2 is varied over the 9 

tests from 0.5 to 5.0 in intervals of 0.5. 

  In real data we have empirical estimates of the longitudinal standard deviation of the 

items. But that does not tell us sampling error because that observed standard deviation is 

composed of three pieces 

€ 

σtotal
2 =σvalid

2 +σunique
2 +σerror

2
 

 (where  total is observed variance, valid variance is estimated from r2 of the loading of 

variable i on the latent dimension, unique variance is systematic variance in item i that is not 



shared with the concept, and error is the sampling error). It is only the total that we know from 

the empirical standard deviation.8 

 The dyad ratios algorithm is mainly an exercise in taking vary large numbers of 

empirically observed ratios within and between items and then averaging over all of them. Such 

elementary arithmetic operations ought to converge closely on the real underlying signal.  Figure 

1 shows that in fact it does. Correlations range from a low of .983 for the maximum sampling 

error of 5.0 to .999 for the minimum tried, 0.5. 

Our real world data are imperfect due to sampling. By aggregating across items—even 

here for only five items—that imperfection is largely eliminated. With larger numbers of items9 

the performance is even stronger. The moral of this story, often observed, is that more data is 

better than less. The worst case, standard practice until recently, is choosing one item to stand for 

the concept. 

 FIGURE 1 ABOUT HERE 

 A typical result is illustrated in Figure 2. The figure shows the underlying sine wave, a 

perfect function of time, in bold. The thinner line is actual estimates of the underlying concept 

produced using items with a sampling error of 2.5 added. The figure is a little hard to make out 

because the estimates converge on the reality of the artificial sine wave. But that convergence is 

the point of the figure, estimates converge on reality. 

FIGURE 2 ABOUT HERE 

                                                

8 In real data unique variance—systematic variation due to the item and not shared with 

the concept—is usually present. In the simulation it is not. 

9 I have used up to 250 items in estimating Mood in the United States. 



I turn in Section 3 to a comparison of the behavior of the algorithm to that of its near 

relative, principal components analysis. 

  

DYAD RATIOS COMPARED TO PRINCIPAL COMPONENTS 

While the foundational idea of dyad ratios differs from the variance apportioning scheme 

at the heart of principal components analysis, much is also the same. This is no coincidence. 

They share a great deal because dyad ratios explicitly borrows a great deal from the established 

technology of the principal components model. 

Both take as a starting point variance associated with variables and transform it to 

associations with latent dimensions. Both derive interpretation from the “loading” of those 

starting variables on the derived dimensions. Both estimate variable validities as the core 

problem of latent dimension estimation. 

The big and obvious difference is that principal components requires a complete set of 

cases, a near impossibility for the public opinion data for which the dyad ratios algorithm was 

developed. Since principal components is undefined for the data which dyad ratios operates on, 

direct comparison is usually not possible. 

But it is possible to compare a somewhat artificial special case, a rare public opinion 

collection with no missing cases. Such a test bed is provided by the General Social Survey's 

items on spending priorities in the United States. Six items pose priorities questions (spending is 



too much, about right, or not enough) for cities, education, environment, welfare, healthcare, and 

race. They have been posed continuously in all GSS studies, 1973-2016.10 

Even with identical cases there is no expectation of identical findings. The two models do 

differ. But the question of similarity is itself interesting. Do we reach similar or differing 

conclusions about the structure underlying a set of observed relationships? 

TABLE 1 ABOUT HERE 

The answer becomes clear in Table 1, where the dimension loadings on the first (and only 

common) dimension are displayed. It displays in column two the estimated loadings from dyad 

ratios and in column three the comparable loadings from principal components.11 The loadings 

do differ, but the two sets show a similar rank order and  correlate at .97.12  

Interpreting the result of a dimensional analysis is a mix or art and science, imprecise 

under the best of circumstances. Here the interpretation of the two results is the same. The latent 

concept is domestic left-right ideology in the United States. None of the differences in loading 

estimates is large enough to challenge that. All of the items tap that concept and the loadings are 

much more similar across them than different. 

                                                

10 The studies themselves are not continuous, sometimes at annual intervals and 

sometimes biennial. There are 30 studies over the 46 year span. I simply create a series that 

consists of the 30 available years. 

11 The principal components results are from Stata iterated principal factor, the closest 

analogy to the dyad ratios iterative method. 

12 The Stata method for comparison is “iterated principal factor” with regression scoring. 



The purpose of a dimensional extraction is usually to create a measure of the latent 

concept. The question then is how similar are the measures derived from dyad ratios and 

principal components? The answer is that they are very similar. The two measures correlate at 

.986. (See Figure 3 for a visual picture of the two series.) For comparative reference, with 

completely identical dimensional solutions the two Stata scoring methods, regression and 

Bartlett, correlate at .99. 

So, for identical data the two methods produce highly similar results. Dyad ratios may 

then be regarded as an extension of the capabilities of principal components to a realm where its 

data requisites are not met. 

FIGURE 3 ABOUT HERE 

DYAD RATIOS COMPARED TO IRT 

Dyad Ratios, like the larger family of principal components dimension extraction 

techniques, has an exploratory flair. Staring with a group of items of unknown relatedness and 

unknown dimensionality, it solves for a low dimensional (maximum two) solution and observes 

relatedness. Item Response Theory, IRT for short, begins with the attitude that the researcher 

knows the true dimensionality, typically one, and imposes it on a set of items pre-screened for 

face validity. Its modern manifestation is tied to Bayesian estimation techniques (McGann, 2013; 

Caughey & Warshaw, 2015). 

Is a meaningful comparison of the two possible? What argues for the possibility is that 

the goal of both models is the same, observing the latent dimension that underlies a group of 

items. As in the previous comparison with principal components, it is rare that we could employ 

both on the same set of items. If IRT analysts prescreen for face validity and Dyad Ratio analysts 



choose by other criteria—such as all available items on a topic—they will not in general be the 

same. 

The case at hand is the Caughy-Warsaw (Caughey & Warshaw, 2015) estimates of Public 

Policy Mood in the United States. For this case, not only is the model of dimensionality 

different, the input data differ quite substantially. In particular Caughey and Warshaw screen not 

only for validity, but they also screen out questions with a relative frame. These are policy 

preference questions that involve a comparison to the status quo, matters of more or less rather 

than absolute preferences. Typical language is of the sort, “Should the government do more, less, 

or about the same as it is doing now?” These relative frame questions make well behaved time 

series and form an important and stable component of estimated mood. 

In fact the degree of overlap between input data is unknown. Because of the exclusion of 

relative frame questions we know for certain that the data are different. How different, a matter 

of degree, is hard to tell. But at the outset we are warned that some similarity of estimates is the 

best that can be expected. This is not a comparison where only the mathematical model differs. 

The model and the data differ. 

FIGURE 4 ABOUT HERE 

The Caughey-Warshaw data (provided by Caughey and Warshaw) estimate Mood for the 

period 1992 to 2012. So that defines the possible overlap. For that period the similarities of the 

two estimates are strong (r = .783). That is more than suggestive evidence that the same concept 

is tapped by both approaches, even though model and data both differ. 

If the two estimates widely diverged, it would set up an argument about which is right 

and which is wrong. Since the convergence is instead reasonably strong, the evidence would 

seem to validate both. We could reach a stronger conclusion if it were possible to observe both 



for identical items. But as Figure 4 clearly shows, there is much more similarity than difference 

in the two estimates. An analyst describing the ideological flow of politics in the United States 

would tell the same story with either Dyad Ratio or IRT estimates of the concept. 
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Table 1: First Dimension Loadings for Six GSS Items Estimated by Principal 
Components and Dyad Ratios Algorithm 

 

Variables 

Dyad Ratios   

Loadings 

Principal Components  

Loadings 

Spend for Cites 0.75 0.70 

Spend for Education 0,84 0.75 

Spend for Environment 0.87 0.88 

Spend for Welfare 0.78 0.73 

Spend for Healthcare 0.52 0,48 

Spend for Race 0.83 0.76 

Percent Variance Explained 60 53 

Correlation between loadings = .97 

 



Figure 1. Algorithm Performance Over a Range of Assumed Sampling Error Magnitudes: 

Correlations Between True Values and Estimates 
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Figure 2. Estimating a Sine Wave in Artificial Data: Sine Wave and Dyad Ratios 

Estimates With Sampling Error of 2.5. The bold perfect curve is the generated Sine Wave. The 

jagged thin line is the Empirical Estimates from Items with Sampling Error. 
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Figure 3. Six GSS Series Latent Structure Estimated by Principal Components and Dyad 

Ratios Algorithm 
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Figure 4. US Policy Mood Estimated by  Dyad Ratios Compared to Caughey-Warshaw 

IRT Estimates, 1972-2012 
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